Signal Logger

4 Kanal Datenlogger mit isolierten 2x 230V und 2x 2-40V DC einzeln konfigurierbaren Eingängen.

Serielles Konfigurationsmenü für:

  • Abtastrate (Signalcheck auf den Leitungen)
  • Entprellzeit (Ausblenden von Signalwacklern/Schaltfunken von Schützen)
  • Mindeste Pulslänge für Speicherung
  • Welcher Signalwechsel gespeichert werden soll ( Signal kommt,Signal geht, Beides)
  • Wo gespeichert werden soll (SD-Karte, Konsole)
  • Speicherformat (Datum-Uhrzeit, Millisekunden des Prozessors, Unixtime(Sekunden seit 1980))
Konsole

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#include <avr/pgmspace.h>
#include <Wire.h>
#include <SPI.h>
#include <SD.h>
#include <Streaming.h>
#include <EEPROM.h>
#include "RTClib.h"
#include <Time.h>
#include <TimeLib.h>

const uint8_t days_in_month [12] PROGMEM = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
const int chipSelect = 10;
const char string_0[] PROGMEM = "1=0-Fallend 1-Steigend 2-Beide";
const char string_1[] PROGMEM = "2=Abtast Intervall";
const char string_2[] PROGMEM = "3=0-Datum+Uhrzeit,1-Timestamp,2-Timestamp+Millis,3-Systemmillis";
const char string_3[] PROGMEM = "4=Ausgabe 0-Serial 1-SD 2-Beides";
const char string_4[] PROGMEM = "5=Minimale Pulslaenge in Ms";
const char string_5[] PROGMEM = "6=Entprellung in Ms";
const char string_6[] PROGMEM = "7=Channel Aktivieren 1=Ein  0=Aus";
const char string_7[] PROGMEM = "8=Channel wechseln(1-4)";
const char string_8[] PROGMEM = "9=Speichern!";
const char string_9[] PROGMEM = "10=RTC setzen unixtime UTC!";

const char* const string_table[] PROGMEM  = {string_0, string_1, string_2, string_3, string_4, string_5, string_6, string_7, string_8, string_9};
//Beispielconfig
int configs[40] = {2, 5, 2, 2, 100, 0, 1, 0, 0, 0, 0, 5, 1, 2, 10000, 100, 0, 0, 0, 0, 0, 5, 1, 2, 10000, 100, 0, 0, 0, 0, 0, 5, 1, 2, 10000, 100, 0, 0, 0, 0};

//RTC&Zeit
RTC_DS3231 RTC;
String filename = "";

void setup() {
  loadconfigs();
  Serial.begin(115200);

  if (! RTC.begin())
  {}
  setSyncProvider(syncProvider);
  setSyncInterval(1000);
  if (!SD.begin(chipSelect)) {
    Serial.println("Card failed, or not present");
    // don't do anything more:
   return;
  }
  filename += String(now() / 60 / 60);
  filename += ".csv";
}

#define SECONDS_FROM_1970_TO_2000 946684800
int pins[4] = {2, 3, 4, 5}; //Pinconfig

char buffer2[50]; //Serial Buffer
String inputString = ""; //Serial Buffer
boolean stringComplete = false; //Serial Helper

int channel = 1; //Menuhelper
boolean menuactive = false; //Menuhelper
int menuchoice = 0; //Menuhelper
int choicevalue = 0; //Menuhelper

int laststate[4] = {HIGH, HIGH, HIGH, HIGH}; //Statehelper
int state[4] = {HIGH, HIGH, HIGH, HIGH}; //Statehelper

//Testtrash
//int channelorder;
//int chswitch = 1;
//int chswitchbackup;

void loop() {
  intervallset();
  serialmenu();
}

//Call between Loops by Serial Input
void serialEvent() {
  while (Serial.available()) {
    // get the new byte:
    char inChar = (char)Serial.read();
    if (!menuactive)
    {
      inputString += inChar;
      if (inChar == '\n') {
        stringComplete = true;
      }
    } else
    {
      if (isDigit(inChar)) {
        inputString += (char)inChar;
      }
      if (inChar == '\n') {
        stringComplete = true;
      }
    }
  }
}


//MenuPrintout
void menu() {
  Serial.print(hour());
  Serial.print(":");
  Serial.print(minute());
  Serial.print(":");
  Serial.print(second());
  Serial.print("-");
  Serial.print(day());
  Serial.print(".");
  Serial.print(month());
  Serial.print(".");
  Serial.println(year());
  Serial.print("Aktiver Kanal: ");
  Serial.println(channel);

  for (int i = 0; i <= 9; i++)
  { int test = ((channel - 1) * 10) + i;
    int tempwert = configs[((((channel - 1) * 10) + i))];
    if (tempwert != -1)
      Serial.print(tempwert);
    spaces(String(tempwert).length());
    strcpy_P(buffer2, (char*)pgm_read_word(&(string_table[i])));
    Serial.println(buffer2);
    delay( 100 );
  }
}

//Menucontrol
void serialmenu() {
  if (stringComplete)
    if (!menuactive && inputString == "menu\n")
    {
      menuactive = true;
      stringComplete = false;
      inputString = "";
      menu();
    } else if (menuactive && menuchoice == 0)
    {
      menuchoice = inputString.toInt();
      strcpy_P(buffer2, (PGM_P)pgm_read_word(&(string_table[menuchoice - 1])));
      Serial.println(buffer2);
      Serial.println("Neuen Wert eingeben!");
      stringComplete = false;
      inputString = "";

    } else if (menuactive && menuchoice == 8)
    {
      choicevalue = inputString.toInt();
      if (choicevalue < 4) {
        channel = choicevalue;
      } else
      {
        Serial.println("Falsche Eingabe");
      }
      stringComplete = false;
      inputString = "";
      menuchoice = 0;
      menu();
    } else if (menuactive && menuchoice == 9)
    {
      saveconfigs((channel - 1));
    } else if (menuactive && menuchoice == 10)
    {
      static time_t tLast;
      time_t t = inputString.toInt() + 7200;
      RTC.adjust(t);
      stringComplete = false;
      inputString = "";
      menuchoice = 0;
      menu();
      //dump any extraneous input


    }

    else if (menuactive && menuchoice != 0)
    {
      choicevalue = inputString.toInt();
      configs[((channel - 1) * 10) + (menuchoice - 1)] = choicevalue;
      stringComplete = false;
      inputString = "";
      menuchoice = 0;
      menu();
    }
}

//Menuhelper für Zeilen
void spaces(int sizechars) {
  for (int z = 8; z != sizechars; z--)
  {
    Serial.print(" ");
  }

}

boolean debouncing[4] = {false, false, false, false}; //Entprellt?
boolean mininterval[4] = {true, true, true, true}; //Minimale Impulslänge für Aktion
long lastintervallmillis[4] = {millis(), millis(), millis(), millis()};
long changestate[4] = {millis(), millis(), millis(), millis()};
long lastdebounce[4] = {millis(), millis(), millis(), millis()};
long lastminpulse[4] = {millis(), millis(), millis(), millis()};

//ControlUnit
void intervallset() {
  long tempmillis = millis();
  for (int i = 0; i <= 3; i++) {
    if (tempmillis >= lastintervallmillis[i] + configs[(i * 10) + 1] && configs[(i * 10) + 6] == 1)
    {
      //  Serial.println("check state");
      lastintervallmillis[i] = tempmillis;
      int tempstate = digitalRead(pins[i]);

      if (tempstate != laststate[i])
      {
        debouncing[i] = true;
        lastminpulse[i] = true;
        laststate[i] = tempstate;
        changestate[i] = tempmillis;
        mininterval[i] = true;
        //Serial.println("Statechange");
      }

      if (debouncing[i]) {
        // Serial.println("debouncing");
        if (tempmillis >= changestate[i] + configs[((i * 10) + 5)] && debouncing[i])
        { debouncing[i] = false;
          mininterval[i] = false;
        }
      }
      if (tempmillis >= changestate[i] + configs[((i * 10) + 5)] + configs[((i * 10) + 4)] && !debouncing[i] && !mininterval[i])
      {
        //Serial.println("check mininterval");
        state[i] = laststate[i];
        debouncing[i] = false;
        lastminpulse[i] = false;
        mininterval[i] = true;
        int Flanke = configs[(i * 10)];
        if (Flanke == 2)
        {
          Flanke = tempstate;
        }
        if (state[i] == Flanke) {
          if (configs[((i * 10) + 3)] == 0 || configs[((i * 10) + 3)] == 2)
          {
            Serial.println( createlogtext(state[i], i, now(), millis() % 1000));
          }
          if (configs[((i * 10) + 3)] == 1 || configs[((i * 10) + 3)] == 2)  {

          }
          File dataFile = SD.open(filename, FILE_WRITE);
          if (dataFile) {
            dataFile.println( createlogtext(state[i], i, now(), millis() % 1000));
            dataFile.close();
          }
        }
      }
    }
  }
}

//Generate Unixtime for RTC Setup
uint32_t get_unixtime(tmElements_t t)
{
  uint8_t i;
  uint16_t d;
  int16_t y;
  uint32_t rv;
  int tmpYear = t.Year + 1970;
  if (tmpYear >= 2000) {
    y = tmpYear - 2000;
  } else {
    return 0;
  }

  d = t.Day - 1;
  for (i = 1; i < (int)t.Month; i++) {
    d += pgm_read_byte(days_in_month + i - 1);
  }
  if ((int)t.Month > 2 && y % 4 == 0) {
    d++;
  }
  // count leap days
  d += (365 * y + (y + 3) / 4);
  rv = ((d * 24UL + (int)t.Hour) * 60 + (int)t.Minute) * 60 + (int)t.Second + SECONDS_FROM_1970_TO_2000;
  return rv;
}

//print date and time to Serial
void printDateTime(time_t t)
{
  printDate(t);
  Serial << ' ';
  printTime(t);
}

//print time to Serial
void printTime(time_t t)
{
  printI00(hour(t), ':');
  printI00(minute(t), ':');
  printI00(second(t), ' ');
}

//print date to Serial
void printDate(time_t t)
{
  printI00(day(t), 0);
  Serial << monthShortStr(month(t)) << _DEC(year(t));
}

//Print an integer in "00" format (with leading zero),
//followed by a delimiter character to Serial.
//Input value assumed to be between 0 and 99.
void printI00(int val, char delim)
{
  if (val < 10) Serial << '0';
  Serial << _DEC(val);
  if (delim > 0) Serial << delim;
  return;
}

void saveconfigs(int channel) {
  for (int i = channel * 10; i <= channel * 10 + 10; i++)
    eepromWriteInt(i * 2, configs[i]);
}


void loadconfigs() {
  for (int i = 0; i <= 39; i++)
    configs[i] = eepromReadInt(i * 2);
}
void eepromWriteInt(int adr, int wert) {
  byte low, high;
  low = wert & 0xFF;
  high = (wert >> 8) & 0xFF;
  EEPROM.write(adr, low); // dauert 3,3ms
  EEPROM.write(adr + 1, high);
  return;
} //eepromWriteInt
int eepromReadInt(int adr) {
  byte low, high;
  low = EEPROM.read(adr);
  high = EEPROM.read(adr + 1);
  return low + ((high << 8) & 0xFF00);
} //eepromReadInt
String createlogtext(int state, int channel, long newunixtime, long newmillis) {
  //"3=0-Datum+Uhrzeit,1-Timestamp,2-TimestampMillis,3-Systemtime";
  String tempstring = "'";
  int checkconfig = configs[(channel * 10) + 2];

  switch (checkconfig) {
    case 0:

      tempstring += day();
      tempstring += ".";
      tempstring += month();
      tempstring += ".";
      tempstring += year();
      tempstring += "-";
      tempstring += hour();
      tempstring += ":";
      tempstring += minute();
      tempstring += ":";
      tempstring += second();
      tempstring += "'";
      tempstring += ",";
      tempstring += "'";
      tempstring += channel;
      tempstring += "'";
      tempstring += ",";
      tempstring += "'";
      tempstring += state;
      tempstring += "'";

      return tempstring;
      break;
    //do something when var equals 1
    case 1:
      tempstring += newunixtime;
      tempstring += "'";
      tempstring += ",";
      tempstring += "'";
      tempstring += channel;
      tempstring += "'";
      tempstring += ",";
      tempstring += "'";
      tempstring += state;
      tempstring += "'";
      return tempstring;
    case 2:

      tempstring += newunixtime;
      tempstring += "'";
      tempstring += ",";
      tempstring += "'";
      tempstring += newmillis;
      tempstring += "'";

      tempstring += ",";
      tempstring += "'";
      tempstring += channel;
      tempstring += "'";
      tempstring += ",";
      tempstring += "'";
      tempstring += state;
      tempstring += "'";
      return tempstring;
      break;
    case 3:

      tempstring += millis();
      tempstring += "'";
      tempstring += ",";
      tempstring += "'";
      tempstring += channel;
      tempstring += "'";
      tempstring += ",";
      tempstring += "'";
      tempstring += state;
      tempstring += "'";
      return tempstring;
      break;
  }
}
time_t syncProvider()
{
  return RTC.now().unixtime();
}

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.

Denkhilfe *

Diese Website verwendet Akismet, um Spam zu reduzieren. Erfahre mehr darüber, wie deine Kommentardaten verarbeitet werden.